Advertising 468 x 60

(MTK) Pernyataan Majemuk (Konjungsi dan Disjungsi)

Pernyataan majemuk ialah dua pernyataan atau lebih yang digabungkan menjadi satu, dengan aturan tertentu. Aturan tersebut dalam logika matematika dapat dikelompokkan menjadi empat macam, yaitu

1. Aturan Konjungsi                     2. Aturan Disjungsi
3. Atuan Implikasi                        4. Aturan Biimpliksi

Berikut ini akan diuraikan dengan lebih lengkap aturan-aturan tesebut.

(1) Konjungsi
Konjungsi ialah kalimat majemuk yang dihubungkan dengan kata hubung “dan”.
Sehingga jika p dan q ialah suatu pernyataan maka konjungsi dari p dan q dilambangkan dengan : “p ᴧ q’’

Tabel kebenaran untuk konjugsi dapat dilihat dibawah ini :

(2) Disjungsi
Disjungsi ialah kalimat majemuk yang dihubungkan dengan kata hubung “atau”. Sehingga jika p dan q ialah suatu pernyataan maka disjungsi dari p atau q dilambangkan dengan : “p v q’’

Tabel kebenaran untuk disjungsi

Untuk lebih jelasnya, pelajarilah contoh soal berikut ini :

01. Tentukanlah nilai kebenaran dari setiap pernyataan majemuk berikut ini :
(a) 9 dan 14 ialah bilangan yang habis dibagi 3
(b) Bandung atau Palembang ialah kota yang terletak di pulau Jawa
(c) 20 habis dibagi 6 dan jumlah sudut-sudut dalam segi tiga ialah 3600
(d) Surabaya ibu kota provinsi Jawa Timur atau ayah pergi ke kebun bersama kakak

Jawab
(a) 9 dan 14 ialah bilangan yang habis dibagi 3
Tinjau : 9 ialah bilangan yang habis dibagi 3 (benar)
14 ialah bilangan yang habis dibagi 3 (benar)
Maka B ᴧ S ≡ S
Jadi pernyataan majemuk di atas bernilai salah

(b) Bandung atau Palembang ialah kota yang terletak di pulau Jawa
Tinjau : Bandung ialah kota yang terletak di pulau Jawa (benar)
Palembang ialah kota yang terletak di pulau Jawa (salah)
Maka B v S ≡ B
Jadi pernyataan majemuk di atas bernilai benar

(c) 20 habis dibagi 6 dan jumlah sudut-sudut dalam segi tiga ialah 3600
Tinjau : 20 habis dibagi 6 (salah)
jumlah sudut-sudut dalam segi tiga ialah 3600 (salah)
Maka S ᴧ S ≡ S
Jadi pernyataan majemuk di atas bernilai salah

(d) Surabaya ibu kota provinsi Jawa Timur atau ayah pergi ke kebun bersama kakak
Tinjau : Surabaya ibu kota provinsi Jawa Timur (benar)
ayah pergi ke kebun bersama kakak (faktual)
Maka B v (Faktual) ≡ B
Jadi pernyataan majemuk di atas bernilai Benar

02. Tentukan nilai x agar kalimat terbuka berikut ini menjadi pernyataan yang benar
(a) x2 – 7x + 10 = 0 dan x2 + 5x – 14 = 0
(b) 2x – 5 = 1 atau x2 + 2x – 15 = 0
(c) x2 – 16 = 0 dan 5 ialah bilangan genap
(d) 3x + 4 = 10 atau 15 habis dibagi 3
(e) x bilangan bulat yang memenuhi x > 3 dan x < 9

Jawab
(a) p = “x2 – 7x + 10 = 0”
p = “(x – 5)(x – 2) = 0” Benar jika x = 5 atau x = 2
q = “x2 + 5x – 14 = 0”
q = “(x + 7)(x – 2) = 0” Benar jika x = –7 atau x = 2
Jadi supaya p ᴧ q bernilai benar haruslah x = 2

(b) p = “2x – 5 = 1”
p = “2x = 6”
p = “x = 3” Benar jika x = 3
q = “x2 + 2x – 15 = 0”
q = “(x + 5)(x – 3) = 0” Benar jika x = –5 atau x = 3
Jadi supaya p v q bernilai benar haruslah x = –5 atau x = 3

(c) p = “x2 – 16 = 0”
p = “(x + 4)(x – 4) = 0” Benar jika x = –4 dan x = 4
q = “5 ialah bilangan genap”
q ialah pernyataan yang bernilai salah
Sehingga : p ᴧ q ≡ p ᴧ S ≡ S
Jadi pernyataan majemuk tersebut bernilai salah untuk semua nilai x bilangan real

(d) p = “3x + 4 = 10”
p = “3x = 6”
p = “x = 3” Benar jika x = 3
q = “15 habis dibagi 3”
q ialah pernyataan yang bernilai benar
Sehingga : p v q ≡ p v B ≡ B
Jadi pernyataan majemuk tersebut bernilai benar untuk semua nilai x bilangan real

(e) p = “x bilangan bulat yang memenuhi x > 4”
p = “{ 5, 6, 7, 8, 9, 10, 11, …}”
q = “x bilangan bulat yang memenuhi x < 9”
q = “{ …, 1, 2, 3, 4, 5, 6, 7, 8 }”
Sehingga : p ᴧ q = { 5, 6, 7, 8 }
Jadi supaya p ᴧ q bernilai benar haruslah x = { 5, 6, 7, 8 }

03. Isilah titik-titik berikut ini dengan kata hubung “dan” atau kata hubung “atau” sehingga menjadi pernyataan majemuk yang tepat
(a) Pak Ahmad mempunyai tiga orang anak, yaitu Budi, Susi ……….Wati
(b) Untuk sampai ke Mega Mall kita dapat melalui jalan A. Yani, jalan Basuki Rahmat …….... jalan Padamg Jati
(c) Pada hari Senin, siswa SMAN 2 diwajibkan memakai baju putih ……... celana abu-abu

Jawab
(a) dan
(b) atau
(c) dan


0 Response to "(MTK) Pernyataan Majemuk (Konjungsi dan Disjungsi)"

Posting Komentar

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel